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Abstract 

The production and consumption of distillers’ dried grains with solubles (DDGS), a co-

product of corn-based ethanol, has rapidly grown over the last decade in the United States (U.S.) 

and lately in other countries that prompt biofuel production, such as Argentina. DDGS has a 

more concentrated nutritional value relative to traditional feed grains and can be used in feed 

rations to meet the energy and protein requirements. In the first study, I evaluated the factors that 

determine the exports of U.S. DDGS, while the second study focused on the effects of the 

inclusion of DDGS in the feed rations of swine in Argentina. 

In the U.S., the feed use of DDGS has grown more than threefold between marketing 

year (MY) 2004/05 and 2014/15 and, over the same period, the demand for U.S. DDGS from 

global markets has also quickly risen. Therefore, the objective of this study was to identify the 

determinants of U.S. DDGS exports through a gravity model and develop a baseline of the 

DDGS exports to major international buyers up to 2020. This baseline was then used to evaluate 

the impacts of variation in the key determinants on DDGS exports in the future. Results suggest 

that importers’ meat production and consumption, importers’ stock of cattle, technical barriers to 

trade, tariffs, and U.S. ethanol production were influential to U.S. DDGS exports. 

In the second part of this thesis the potential cost and phosphorus quantity effects of 

including DDGS in the feed rations on the Argentinean swine industry were analyzed. A 

conventional feed ration without DDGS and an alternative feed ration including DDGS were 

studied using cost and phosphorus minimization models for three different growth categories of 

swine in their growing and finishing growth stages. Results suggest that incorporating DDGS in 

a swine feed ration can potentially achieve the goals of minimum cost and minimum phosphorus 

content simultaneously. My assessment also implies that the Argentinean swine industry could 
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benefit in cost savings of up to US $19.21 million and a reduction in phosphorus by five percent 

if DDGS was fully adopted in the feed rations for all growth categories of swine.  
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Chapter 1: Introduction 
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1.1 Introduction 

Distillers’ dried grains with solubles (DDGS) is a co-product from the dry-mill corn-

based ethanol production and emerged as a relatively new feedstuff for livestock and poultry. 

DDGS is a unique mid-protein, high-energy feed ingredient that partially replaces soybean meal, 

corn and phosphorus supplements in animal feed rations (United States (U.S.) Grains Council, 

2012).  

The increase in DDGS production has been highly correlated with the expansion of the 

biofuel sector in the U.S. over the last fifteen years. The implementation of the Renewable Fuel 

Standard in the Energy Policy Act of 2005 and the Energy Independence and Security Act of 

2007 in the U.S. has resulted in a considerable increase in the corn use for ethanol production 

(Fox, 2009). The total amount of corn used in the U.S. to produce ethanol increased from 

roughly 16 million metric tons (mmt) in marketing year (MY) 2000/01 to 132 mmt in MY 

2014/15, and the ratio of corn used for ethanol to the U.S. corn production went from a five 

percent in MY 2000/01 to a 33% in MY 2014/15 (United States Department of Agriculture 

(USDA), World Agricultural Supply and Demand Estimates Report (WASDE), 2016).   

DDGS production in the U.S. has increased from seven mmt in MY 2004/05 to 36.1 mmt 

in MY 2014/15 (USDA Economic Research Service (ERS), 2016), which makes the U.S. the 

world’s largest producer (Fox, 2008). In addition, the exports of U.S. DDGS grew from one mmt 

to 11.50 mmt over the same period (USDA ERS, 2016). The renewable fuel mandates and 

substantial corn production indicate that this country will maintain a key role in the world supply 

of DDGS. The abundant availability of DDGS, along with the high prices of corn and soybeans 

after the establishment of the ethanol industry, suggest a research opportunity to identify the 

determinants of U.S. DDGS exports to the international buyers.  



www.manaraa.com

3 

Argentina currently is also developing a corn-based ethanol industry that co-produces 

DDGS. However, in comparison with the U.S., its DDGS production in the world market is still 

negligible. The production of Argentinean DDGS increased from almost zero in 2012 to 382,000 

metric tons (mt) in 2016 (Rosario Stock Exchange, Personal communication, 2017) and was 

primarily used as feedstock for the domestic livestock sector (Picatto, Personal communication, 

2016). Nevertheless, the economic and environmental impact of using DDGS in animal feed 

rations in Argentina has yet to be analyzed.  

This thesis includes two studies on the demand of DDGS. The first one aimed to identify 

and quantify the factors that determine the export demand of U.S. DDGS. A gravity model was 

employed to assess the effects of different variables on the quantity of the DDGS exported from 

the U.S. to its major trading partners. A baseline of U.S. DDGS exports, based on the estimated 

gravity coefficients, was also developed to simulate the changes in the demand for U.S. DDGS 

due to meat production in the key importing countries up to 2020. 

The second essay focused on the economic and environmental effects of the inclusion of 

DDGS in the feed rations of swine in Argentina. To quantify the effects of the use of DDGS in 

the Argentinean swine industry, a conventional feed ration without DDGS and an alternative 

feed ration including DDGS were compared. Both feed rations were analyzed using cost and 

phosphorus minimization for three different growth categories of swine in a multi-objective 

linear programming framework. The results from the optimization models were utilized to 

estimate the displacement of soybean meal and corn, and the potential economic and phosphorus 

savings for the Argentinean swine industry by using DDGS.  
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Abstract 

United States (U.S.) exports of distillers’ dried grains with solubles (DDGS), a by-

product of corn ethanol, has grown more than fivefold over the last decade. However, there is 

limited knowledge on what factors drive U.S. DDGS exports and how those factors could impact 

future U.S. DDGS exports. The objective of this study was to identify the determinants of U.S. 

DDGS exports and estimate the growth of DDGS exports to major international buyers. A 

commodity-specific gravity model was estimated using the Pseudo-Poisson maximum likelihood 

method for U.S. DDGS exports to 29 countries from 2000-2013. Results suggest that importing 

country meat production and consumption, technical barriers to trade, and U.S. ethanol 

production influence U.S. DDGS exports. A baseline outlook for U.S. DDGS exports to the top 

six importing countries through 2020 was generated. Variations in DDGS exports under the 

scenarios of high and low meat production in those importing countries were also derived. 
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2.1 Introduction 

The ethanol industry in the United States (U.S.) has quickly expanded since the 

implementation of the Renewable Fuel Standard in the Energy Policy Act of 2005 and the 

Energy Independence and Security Act of 2007. As a result, the primary use of corn produced in 

the U.S. has shifted from being a feedstuff for the livestock industry to ethanol production (U.S. 

Department of Agriculture Economic Research Service (USDA ERS), 2016a). This shift has 

resulted in the emergence of distillers’ dried grains with solubles (DDGS), a by-product of corn-

based ethanol, as an important feedstuff for the livestock industry.  

DDGS are a unique mid-protein, high-energy feed ingredient that partially replaces 

soybean meal, corn, and phosphorus supplements in animal feed rations (U.S. Grains Council, 

2012). On average, one metric ton (mt) of DDGS can supply the equivalent protein and energy 

content as feeding approximately 1.22 mt ration consisting of a combined 1.03 mt corn and 0.19 

mt soybean meal (Hoffman and Baker, 2011). Thus, the feed consumption of DDGS in the U.S. 

has grown more than threefold from marketing year (MY) 2004/05 to MY 2014/15 (USDA ERS, 

2016b) (Figure 2.1). Meanwhile, U.S. DDGS exports have expanded at a much faster rate than 

domestic feed consumption, increasing from less than one million metric tons (mmt) in MY 

2004/2005 to 11.5 mmt in MY 2014/2015 (USDA ERS, 2016b) (Figure 2.1). The growth in U.S. 

DDGS exports has been primarily related to higher feedstuff prices, increased meat consumption 

in emerging countries, and the success of using DDGS in feed rations for various livestock 

(Cheon et al., 2008; Fabiosa et al., 2009; Jewinson and Gale, 2012). For example, Cheon et al. 

(2008) stated that DDGS could be 20% of the layers’ diet in South Korea without causing any 

production impacts and potentially reducing the cost of poultry feed, suggesting that the demand 

for DDGS in South Korea could increase. Similarly, Fabiosa et al. (2009) estimated that China 
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could decrease feed ration expense six percent by incorporating DDGS in finishing hogs, and 

projected that China could import at least three mmt of DDGS in the future. Their projection has 

been validated with recent data showing that China’s DDGS imports were over four mmt of 

DDGS in 2013 and reached more than six mmt in 2015 (USDA Foreign Agricultural Service 

(FAS), 2016a)1. 

In addition to the surge in U.S. DDGS exports, U.S. DDGS destination markets have 

changed over the last decade. In the early 2000s, the European market was the primary 

destination for U.S. DDGS, accounting for 85% of the U.S. DDGS exports (USDA FAS, 2016a). 

However, the share of European imports decreased substantially in 2006 due to regulations on 

genetically modified crops and their co-products (Fox, 2008; USDA FAS, 2016a). In 2015, only 

a four percent of U.S. DDGS exports were shipped to the European market. Meanwhile, China 

has emerged as the leading importer of DDGS, accounting for more than 50% of U.S. 2015 

exports (USDA FAS, 2016a). The surge in China’s DDGS demand was due to higher feedstuff 

prices, an exemption from the value-added tax and import quotas for DDGS, and an increased 

meat consumption (Jewinson and Gale, 2012). Other major importers of U.S. DDGS in 2015 

included Mexico with a share of 13% of U.S. DDGS exports, Vietnam (5%), South Korea (5%), 

Canada (4%) and Thailand (3%). These six countries together accounted for more than 80% of 

total U.S. DDGS exports (Figure 2.2). 

Given the importance of U.S. corn-based ethanol production in the world market2, the 

U.S. is anticipated to remain the prevailing supplier of DDGS (Cordero, Personal 

                                            
1 China’s DDGS imports plunged to 2.38 mmt in 2016 though due to a policy distortion by Chinese government 

(USDA FAS, 2016a). 
2 According to the Renewable fuels association, in 2016 the production of U.S. ethanol represented the 57.67% of 

the world production with 15,330 million of gallons 
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communication, 2016). Also, meat production and consumption as well as the use of DDGS as a 

feedstuff is expected to continue expanding in numerous emerging economies. Thus, the U.S. 

DDGS market could continue to increase, enhancing U.S. agricultural trade. In addition, DDGS 

sales have become increasingly important for the ethanol industry given strong competition from 

fossil fuels and a reduction in its profit margins (Dhuyvetter et al., 2005). According to 

Taheripour et al. (2010), about 16% of a corn-based dry milling ethanol plant’s revenue came 

from DDGS sales. Thus, marketing U.S. DDGS to international buyers has become more critical 

for the financial stability of ethanol plants, and increase the exports of U.S. agricultural products.  

Therefore, the objective of this study is to identify the determinants of U.S. DDGS 

exports through a gravity model, and develop a baseline of the DDGS exports to major 

international buyers for the upcoming years. The baseline is then used to evaluate the impacts of 

the key determinants on DDGS exports in the future. This information could help inform U.S. 

trade policy makers to expand DDGS sales and U.S. agricultural exports.  

2.2 Literature Review 

Many studies have focused on the potential domestic consumption of U.S. DDGS 

considering the stock of cattle, swine, and poultry as well as the maximum amount of this 

product that each class of animal can readily digest. Analysts have estimated the potential 

domestic consumption of this feedstuff between 51.56 and 55 mmt (Dhuyvetter et al., 2005; 

Dooley, 2008), which supports the idea that the U.S. domestic livestock market could absorb the 

entire production of DDGS supplied by the ethanol industry. Despite this fact, industry analysts 

agree on the necessity of developing new markets for U.S. DDGS to provide support to its price 

(Fox, 2008). In this regard, the USDA along with the U.S. Grains Council have been working in 
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the last decade to develop new markets for the U.S., which has triggered the exports of this 

feedstuff in recent years.  

Despite the increasing importance of DDGS to the U.S. agricultural and biofuel sectors, 

there is limited literature on what drives the exports of U.S. DDGS and the impact of those 

factors on the exports in the future. Beghin et al. (2014) analyzed the impact of trade 

liberalization between the European Union and U.S. on agricultural commodities using a partial 

equilibrium trade model. Their findings indicated that eliminating trade barriers could increase 

U.S. exports of DDGS 40% by 2020. While this is an interesting insight into changes in trade 

policy on DDGS exports, their modeling approach does not provide details on factors that impact 

the trade of U.S. DDGS. 

Another commonly used approach to understanding the determinants of the trade flows of 

agricultural commodities among different countries is the gravity model. This model predicts 

that trade flows between two countries are directly proportional to their market size, which is 

normally measured by their gross domestic products (GDP) and population, and it is inversely 

proportional to their distance, which is a proxy for transportation costs (Gómez-Herrera, 2013). 

Gravity models have been employed to assess a variety of trade analysis. They have been 

used to determine the effects of the existence of regional free trade agreements on the trade 

flows. For instance, Zahniser et al. (2002) used a series of gravity models to explore changes in 

the U.S. agricultural exports to the members of North American Free Trade Agreement 

(NAFTA) and Southern Common Market (MERCOSUR), both at the aggregate level and for 

individual commodities. Other studies have focused mainly on the effects of the existence of a 

monetary union between trading partners on trade, finding that currency unions have a strong 

positive influence (Glick and Rose, 2002).  
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The impact of tariffs and non-tariffs barriers on trade have also been assessed using the 

gravity equation. Jayasinghe et al. (2010) employed a sectoral-type gravity model to evaluate the 

effect of tariffs, and sanitary and phytosanitary (SPS) regulations on the export demand of U.S. 

corn seeds. The authors found that there was a strong evidence that trade costs measured by the 

existence of tariffs and SPS regulations had a negative impact on the exports of U.S. corn seeds. 

Dreyer and Fedoseeva (2016) also considered tariffs in their study on the determinants of the 

German beer exports finding that they affect negatively the trade flows of this product. 

Other authors have focused on the effect of the variability of the exchange rate on the 

volume of agricultural exports. Hatab et al. (2010) studied the determinants of Egyptian 

agricultural exports. They found that there was a strong positive effect of the depreciation of the 

Egyptian pound and their agricultural exports. The gravity equation was also employed in the 

literature to analyze the effect of the real exchange rate uncertainty on the agricultural trade (Cho 

et al., 2002; Arize et al., 2008; Kandilov, 2008; Sheldon et al., 2013). The general conclusion of 

these studies was that the real exchange rate uncertainty had a significant negative effect on 

agricultural trade, with a larger effect on developing country exporters. 

A gravity model approach could explain how country size and transaction costs/barriers 

impacts DDGS trade flows between the U.S. and its trading partners. Therefore, in this study a 

gravity model was employed to find and quantify the factors that determine U.S. DDGS exports. 

2.3 Conceptual Framework 

In order to analyze DDGS trade, the interregional model of trade was employed. This 

model assumes there is one product, in this case DDGS, and two countries. In the absence of 

trade, the supply and demand curves in each country would determine their equilibrium price of 

the commodity. However, if the price in one country is higher than in the other one, this price 
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gap would give place to trade flows between the countries, from the one in which the price is 

lower to the one in which the price is higher. Trade would take place until there is no gain from 

price arbitrage, i.e. that the only price difference between the regions would be the transportation 

cost, assuming there is free trade and the exchange rate is fixed (Bressler and King, 1970). 

According to Prentice et al. (1998), in the interregional trade model, the excess demand 

curve in the importing country can be derived from the horizontal difference of the domestic 

demand and supply curves for all prices below the domestic equilibrium price. The excess supply 

curve for the exporting country, on the other hand, can be obtained from the horizontal 

difference of the domestic supply and demand curves for all prices above the domestic 

equilibrium price. 

Under the assumptions that there is only one commodity and two countries and following 

Prentice et al. (1998), the excess supply and demand functions could be represented as follows: 

𝑄𝑥 =  𝑄𝑥(𝑃𝑥, 𝐴𝑥) (2.3-1) 

𝑄𝑚 =  𝑄𝑚(𝑃𝑚, 𝐴𝑚) (2.3-2) 

where 𝑄𝑥 is the quantity of excess supply, 𝑄𝑚 is the quantity of excess demand, 𝑃𝑥 is the 

commodity price in the exporting country, 𝑃𝑚 is the commodity price in the importing country, 

𝐴𝑥 is the vector of exogenous supply and demand shifters in the exporting country and,  𝐴𝑚 is 

the vector of exogenous supply and demand shifters in the importing country. 

The spatial equilibrium condition is met when the difference between the price in the 

exporting country (𝑃𝑥) and in the importing country (𝑃𝑚) equals the transportation cost to ship 

the good from one country to the other one (𝐶): 

𝐶 =  𝑃𝑥 − 𝑃𝑚  (2.3-3) 
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If the excess supply in the exporting country equals the excess demand in the importing 

country, the market clearing condition is met: 

𝑄𝑥 = 𝑄𝑚 (2.3-4) 

From equation (2.3-1) and (2.3-2), the inverse functions with respect to their prices can 

be derived as follows: 

𝑃𝑥 =  𝑃𝑥(𝑄𝑥, 𝐴𝑥)  (2.3-5) 

𝑃𝑚 =  𝑃𝑚(𝑄𝑚, 𝐴𝑚) (2.3-6) 

By substituting equations (2.3-5) and (2.3-6) into (2.3-3) the determinants of the 

transportation demand function are found as follows: 

𝐶 =  𝐶(𝑄𝑥, 𝑄𝑚, 𝐴𝑚, 𝐴𝑥)  (2.3-7) 

When there is equilibrium and the market-clearing condition is satisfied, the following 

condition is met: 

𝑄𝑥 =  𝑄𝑚 = 𝑄𝑒 (2.3-8) 

By substituting (2.3-8) in (2.3-7), the demand function for transportation can be written 

as: 

𝐶 =  𝐶(𝑄𝑒 , 𝐴𝑚, 𝐴𝑥) (2.3-9) 

From (2.3-9) the inverse demand function can be derived as: 

𝑄𝑒 = 𝑄𝑒(𝐶, 𝐴𝑚, 𝐴𝑥) (2.3-10) 

From equation (2.3-10), when the markets are in equilibrium, trade volume between the 

two countries will depend on the transportation costs as well as the supply and demand shifters in 

both the exporting and importing countries. This equation helps to conceptualize the gravity 

model since it explicitly relates the trade flows to factors that were derived from the interregional 

trade model (Prentice et al., 1998). 
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2.4 Model Specification and Estimation 

2.4.1 Specification 

The standard gravity model defined by Tinbergen (1962) was designed to predict the 

trade (T) between two countries as a function of the economic sizes (S), and the 

transaction/transportation costs (TC) between the two countries. The gravity model can also be 

expanded by including variables that may influence the volume of trade such as the existence of 

tariffs or non-tariffs measures, a common border, common language, and common religion (e.g. 

Davis et al. 2014; Serrano and Pinilla, 2014; Ghazalian, 2015). The model can be generally 

expressed as: 

𝑇𝑖𝑗 = 𝐾
𝑆𝑖

𝛼𝑆𝑗
𝜃

𝑇𝐶𝑖𝑗
𝛾  (2.4.1-1) 

where 𝑇𝑖𝑗 is the trade between country 𝑖 and 𝑗; α, θ and γ are unknown parameters, 𝑇𝐶𝑖𝑗 is the 

transportation/transaction cost between country 𝑖 and 𝑗, and K is the constant term. Typically, 

GDP and population are used as a proxy for economic size and distance is used a proxy for 

transaction/transportation costs. However, this specification for these proxy variables for 

economic size may not be relevant for agricultural commodities. Koo et al. (1994) replaced the 

countries’ GDP with countries’ farm income in the trade analysis of meat. Jayasinghe et al. 

(2010) showed that total corn production was a better proxy for economic size than GDP when 

using a gravity model to determine factors impacting corn seed trade. Thus, a commodity-

specific gravity model can be developed to incorporate the unique characteristics and policies 

associated with trade flows of the specific commodity in the exporting and importing countries 

(Koo et al., 1994).  
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A commodity-specific gravity model for U.S. DDGS exports that considers several other 

factors that could impact the volume of trade was developed. Since DDGS is a feedstuff in 

livestock production, the economic size considering three specifications for the livestock 

industry size in a country was modeled. In the first model specification (Specification 1), the 

stock of cattle (number of dairy and beef cattle) was employed as a proxy for the country’s 

economic size of DDGS use. This variable is a conservative proxy since DDGS use by other 

livestock, such as hogs, was not considered. That is, this proxy likely underestimates the demand 

for DDGS for a country. The second model specification (Specification 2) considered a country’s 

beef and pork consumption as the proxy of economic size of DDGS use. This variable represents 

a broader demand for U.S. DDGS since meat consumption also incorporates the income of the 

country. Countries with increasing levels of income might increase their consumption of meat; 

hence, the demand for feedstuffs such as U.S. DDGS. However, a larger consumption of meat 

could also signify larger imports of the meat instead of the feedstuff. Finally, Specification 3 

included the country’s pork and beef production as a proxy for DDGS economic size. An 

increase in meat production for either domestic or export demand was assumed to increase 

DDGS use.  

Several other variables that might be important when developing a gravity model for U.S. 

DDGS exports were also considered. Since DDGS is a co-product of ethanol production, ethanol 

production was used as a proxy of DDGS production. Increasing production of ethanol 

production was hypothesized to generate more exports of DDGS to international markets. The 

inverse real exchange rate (US $/local currency) was considered as a factor since a depreciation 

of the importing country’s currency might lead to less purchasing power for importing goods. 

Also, the ad valorem tariff on U.S. DDGS imports was evaluated as a deterrent of trade that 
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would reduce exports if a higher tariff was imposed. In addition, an indicator variable 

representing technical barriers to trade (TBT), a category of non-tariff barriers to trade, for 

DDGS was constructed based on the notifications of new regulations submitted to the World 

Trade Organization (WTO) by U.S. trading partners. The variable was set equal to one if at least 

one notification in the Harmonized Commodity Description and Coding System was filed related 

to any of the four selected chapters, including grains, oilseeds and their co-products3, and zero 

otherwise. Countries imposing TBT were assumed to have a higher likelihood of exercising 

similar restrictions on U.S. DDGS, hence lowering DDGS imports. 

Following Hatab et al. (2010) and Sheldon et al. (2013), importer fixed effects were 

applied to control for country-specific influences on trade flows. The distance variable was thus 

dropped as it would have been collinear with the importer fixed effects. A reduced-form of 

gravity equation that explains the determinants of U.S. DDGS exports is thus defined as:  

𝑋1𝑗𝑡 = 𝛽0𝐸1𝑡
𝛽1(1 + 𝑧1𝑗𝑡)

𝛽2
𝐴1𝑡

𝐷 𝛽3𝐴𝑗𝑡
𝑊𝛽4𝑟𝑗1𝑡

𝛽5𝑒𝛽6𝑏𝑡1𝑗𝑡+𝛽7𝐼1𝑗
  𝜇1𝑗𝑡 (2.4.1-2) 

where 𝑋1𝑗𝑡 is the quantity of DDGS exported from the U.S. (country 1) to country j (j = 2,…,30) 

in the year t (t = 1,…, 14) in mt; 𝛽0, 𝛽1, … , 𝛽7, are the coefficients to be estimated;  𝐸1𝑡 is the U.S. 

ethanol production; z1jt is the ad valorem tariff applied to DDGS by country j to U.S. DDGS 

exports; 𝐴1𝑡
𝐷  represents the market size of DDGS use in the U.S., using variables defined in 

Specification 1, 2, and 3; 𝐴𝑗𝑡
𝑊 represents the market size of DDGS use in the importing countries, 

using variables defined in Specification 1, 2, and 3;  𝑟𝑖𝑗𝑡 is the real exchange rate in country j 

                                            
3 The chapters that were included in the construction of the non-tariff barriers to trade variable were: 10- Cereals; 

11- Products of the milling industry, malt, starches, inulin, wheat gluten; 12- Oil seeds and oleaginous fruits, 

miscellaneous grains, seeds and fruit, industrial or medicinal plants, straw and fodder; and 22- Residues and waste 

from the food industries; prepared animal fodder. 
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with respect to U.S.; 𝑏𝑡𝑗𝑡 is a binary variable recording a notification of technical barrier to trade 

from country j; 𝐼1𝑗 represents importer fixed effect and;  𝜇1𝑗𝑡 is the error term.  

2.4.2 Estimation 

Two common technical issues in the estimation of gravity models are heteroskedasticity 

in the error term and zero values for the dependent variable (Santos Silva and Tenreyro, 2006; 

Burger et al., 2009; Gómez-Herrera, 2013). The variance of the error term is generally non-

constant, making ordinary least squares (OLS) an inappropriate method of estimation in the log-

linearized form (Jayasinghe et al., 2010; Westerlund and Wilhelmsson, 2011; Arvis and 

Shepherd, 2013). In addition, a sizeable portion of zero values in the dependent variable may 

lead to a sample selection bias since the logarithm function is not defined at zero (Shepherd, 

2013). Thus, the Heckman selection model and the Pseudo-Poisson maximum likelihood 

(PPML) model are commonly used to deal with these two issues. 

The Heckman selection model consists of two steps. In the first step a Probit equation is 

estimated to define whether two countries trade or not, in the second step, the expected values of 

the trade flows, conditional on that country trading, are estimated using OLS. This model 

requires an exclusion variable that affects only the decision process. That is, a variable that 

should be correlated to the probability of a country to trade but not with the actual level of trade 

(Gómez-Herrera, 2013). Because in the second step the equation is estimated using OLS, this 

methodology does not address the heteroskedasticity problem (Shepherd, 2013). A natural way 

to solve this issue is to estimate the second equation using maximum likelihood (Jayasinghe et 

al., 2010). However, this type of estimation may result in biased and inconsistent parameter 

estimates when fixed effects are used (Jayasinghe et al., 2010; Shepherd, 2013). 
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The PPML method, proposed by Santos Silva and Tenreyro (2006), has been suggested 

as an approach estimation method to account for the specification issues of the gravity equation. 

The PPML method has been widely employed in the literature (e.g., Burger et al., 2009; 

Anderson and Yotov, 2010; Philippidis et al., 2013; Anderson et al., 2015; Ghazalian, 2015; 

Dreyer and Fendoseeva, 2016) since the estimator is consistent in the presence of 

heteroskedasticity in the error term, and addresses zero values of the dependent variable in the 

level-log form (Santos Silva and Tenreyro, 2006). In addition, PPML performs well in small 

samples (Westerlund and Wilhelmsson, 2011). Furthermore, Fally (2015) showed that the 

gravity model estimated using PPML approach with fixed effects of trading countries (exporters 

and importers) is consistent with the approach imposing “multilateral resistance” indexes 

proposed by Anderson and van Wincoop (2003). Another advantage of using PPML is that the 

interpretation of the coefficients is straightforward and follows the same pattern as under 

ordinary least squares (Shepherd, 2013).  

The PPML method was applied to estimate the gravity model of U.S. DDGS exports in 

this study because of numerous zero observations for the dependent variables (~25%) and the 

presence of heteroskedasticity issue. Also, fixed effects of importing countries were included in 

the reduced-form of DDGS gravity model to generate a consistent estimator. The econometric 

model was specified as:   

𝑋1𝑗𝑡 = 𝐸𝑥𝑝(𝛽0 + 𝛽1(ln 𝐸1𝑡)  + 𝛽2(𝑙𝑛(1 + 𝑧1𝑗𝑡)) + 𝛽3(𝑙𝑛𝐴1𝑡
𝐷 ) +

𝛽4(𝑙𝑛𝐴𝑗𝑡
𝑊) + 𝛽5(𝑙𝑛 𝑟𝑗1𝑡) + 𝛽6(𝑏𝑡1𝑗𝑡) +  𝛽7(𝐼1𝑗)) + 𝜇1𝑗𝑡  

(2.4.2-1) 

Since the gravity model in equation (2.4.2-1) was estimated in a level-log form, the 

coefficients of the continuous explanatory variables are the exports elasticities of each variable. 
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For the binary variable, the percentage change in exports was calculated as the exponential of the 

coefficient minus one, multiplied by 100 (Philipidis et al., 2013). 

2.4.3 Baseline and Simulation 

Based on the estimated reduced-form of gravity model, a baseline outlook of U.S. DDGS 

exports was developed for the period 2017−2020. The results and R-squared were compared 

across the three specifications and the third specification of the model was employed to estimate 

the baseline. Also, this specification was used to analyze different scenarios because meat 

production as a proxy for market size of DDGS was likely between the conservative definition 

(Specification 1) and a more aggressive estimate (Specification 2). Furthermore, meat production 

in importing countries was significant at the five percent. 

The baseline outlook covered the top six importing countries of U.S. DDGS together 

accounting for the 81% of the U.S. DDGS exports in 2015 − China, Mexico, Vietnam, South 

Korea, Canada and Thailand. The baseline was used as a benchmark to assess the consequences 

of introducing variations in the meat production, ceteris paribus, in the importing countries. The 

projected meat production for the importing countries from 2014-2020 were collected from the 

Organization of Economic Co-operation and Development (OECD) to estimate U.S. DDGS 

exports in the baseline (OECD, 2016). For the other policy and macroeconomic variables in the 

model (i.e., tariffs on DDGS, real exchange rate, TBT), it was assumed that they remain constant 

at the 2011-2013 average level. U.S. corn-based ethanol production was anticipated to be 

stagnant in the coming years since the mandated amount of corn-based ethanol production 

required in the Renewable Fuel Standard in the Energy Policy Act of 2005 and the Energy 

Independence and Security Act of 2007 has been achieved. 
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2.5 Data 

The data of U.S. DDGS export quantity was obtained from the Global Agricultural Trade 

System on an annual year basis (USDA FAS, 2016a). A sample of 29 countries that accounted 

for nearly 95% of total U.S. DDGS exports in the 14 years were selected (USDA FAS, 2016a). 

This study was concentrated on the period of 2000−2013 because the exports of U.S. DDGS 

increased steeply after the year 2000 and a shift in the main importing countries occurred during 

this time span. Table 2.1 presents the average imports of U.S. DDGS of the 29 countries for the 

two periods 2000-2005 and 2006-2013. A strong growth in imports of U.S. DDGS is shown for 

many countries in Asia, led by China, and several trading partners in America (Mexico, Canada, 

Cuba, etc.) and Middle East (Israel and Turkey). The solid growth of exports to Asia, America 

and Middle East clearly surpassed exports reduction to European countries. 

The stock of cattle, meat consumption, and meat production of pork and bovine in the 

U.S. and the importing countries were taken from the Food and Agriculture Organization of the 

United Nations statistics (FAOSTAT) from the United Nations (FAOSTAT, 2016). The real 

exchange rate for each country was obtained from the International Macroeconomic Data Set in 

the USDA ERS (2016c). The ad valorem tariff applied to U.S. DDGS by each importing country 

was obtained from the World Integrated Trade Solution (2016). The TBT notifications were 

obtained from the Technical Barriers to Trade Information Management System (WTO, 2016). 

The data on the ethanol production quantity in the U.S. was available from the Renewable Fuels 

Association statistics (2016). Table 2.2 summarizes the descriptive statistics of each variable. 
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2.6 Results 

2.6.1 Regression Results 

The results of the gravity model associated with the three specifications in this study are 

presented in Table 2.3. The elasticity of U.S. ethanol production, a variable that proxies the U.S. 

DDGS production, was positive and significant (at the 0.01 level) for three estimated models. 

The elasticity was ranged from 0.81 to 1.10 among the three specifications, suggesting that a one 

percent increase in ethanol production leads to a near equal increase in U.S. DDGS exports. U.S. 

ethanol production is projected to be stable in the next few years since the U.S. has reached the 

mandate of corn-based ethanol production proposed by U.S. Environment Protection Agency. 

Also, lower crude oil prices may prevent a greater expansion of corn-based ethanol and DDGS. 

Therefore, growth in DDGS exports may not be driven much in the future by U.S. corn-based 

ethanol production. 

Similar to the literature, tariffs in the importing countries were found to negatively affect 

U.S. DDGS exports in the first and third specifications. International demand of U.S. DDGS, on 

average, was inelastic to changes in the ad valorem tariff (with elasticity around -0.25 among 

specifications). Therefore, a one percent increase in tariffs results in a less than proportional 

reduction in the DDGS exports. The TBT negatively impacted U.S. DDGS exports in all three 

specifications (at the 0.01 level). The presence of a TBT would reduce exports of U.S. DDGS to 

an importing country by 45.07% to 47.64%4 compared to the countries that do not file a TBT 

notification to WTO. For example, E.U. used to be the dominant export market for U.S. DDGS 

between 1995 and 2000 with a share of over 80%. However, as a result of regulations on 

                                            
4 The percentage change in the U.S. exports associated with the switch in TBT binary variable from 0 to 1 was 

calculated as: (𝑒𝛽6 − 1)×100. 
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genetically modified grains and their co-products in 2004, DDGS exports to the E.U. declined to 

four percent of 2015 U.S. DDGS exports. Similar strategy was applied by China in late 2016 due 

to their domestic overstock of corn, and DDGS exports to China dropped from over six mmt in 

2015 to about two mmt in 2016. Overall, the adverse impact of exercising TBT by importing 

countries on U.S. DDGS exports was found larger than the effect of ad valorem tariffs. This 

result is compatible with the recent empirical analysis in Arita et al. (2015) and Dal Bianco et al. 

(2015). Additionally, the effect of the real exchange rate in the importing country with respect to 

the U.S. did not significantly impact trade of DDGS.  

As expected, the variables that account for the market size (or DDGS demand) of 

importing countries had a significant positive effect (at the 0.10 level) on U.S. DDGS exports. 

The export elasticities of the demand for DDGS market size were elastic with coefficients values 

around three. This implies that a one percent increase in the stock of cattle, consumption of meat, 

or the production of meat in the importing countries would increase the demand for U.S. DDGS 

by approximately a three percent. Conversely, domestic demand for U.S. DDGS in each of the 

specifications was not significant, which suggests that the domestic market could be served by 

abundant supply of DDGS and presented no impact to DDGS exports. 

2.6.2 Baseline and Simulation Results 

The historical data of U.S. DDGS exports from 2000 through 2016 and the baseline 

outlook from 2017 through 2020 are presented in Figure 2.3. A considerable drop is seen in 

2016, caused by a sharp reduction in China’s imports from more than six mmt to about two mmt. 

China imposed the anti-dumping duties and bans on U.S. DDGS because of sizeable carryover of 

corn (USDA FAS, 2016d, 2016e). Vietnam shows a strong growth of DDGS imports in 2016, 

driven by the elimination of its value-added tax on animal feed ingredients and the increase in 
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the international price of pork that improved production margins (USDA FAS, 2015, 2016b). 

Thailand’s DDGS imports also increased by more than 95% from the 2015 level because of 

shortage of corn production (USDA FAS, 2016c).  

After the decrease in the imports of U.S. DDGS in the top six importers in 2016, a steady 

rise in DDGS exports was anticipated, assuming the overstock issue of corn mitigates over time, 

and reaches similar 2015 levels by the year 2020. China would remain a major player in the 

market; however, their policy intervention or TBT could disrupt its imports of U.S. DDGS 

considerably. The other top five importing countries were projected to increase their imports of 

U.S. DDGS and possess a higher share of total U.S. DDGS exports since compounders and 

livestock producers in these importing countries experienced cost reduction after incorporating 

DDGS in the feed rations of animals. 

 Since red meat production was identified as the most influential factor to U.S. DDGS 

exports, it was investigated how changes in annual growth rates of red meat production could 

impact exports of the U.S. DDGS. The projected annual growth rate for red meat production was 

around 1.30% (OECD, 2016). Two scenarios were considered with a higher than expected 

annual growth rate in red meat production (1.80%), and a lower than expected annual growth 

rate in red meat production (0.50%). These ranges were determined using historical data of red 

meat production in those six top importing countries from 2005 to 2015 (OECD, 2016).  

Figure 2.4 depicts the effect of the growth of red meat production on U.S. DDGS exports. 

Under a weak growth of red meat production scenario, the exports of U.S. DDGS to the top six 

importers were projected to be 9.43 mmt for the year 2020, which was about a ten percent lower 

than the baseline estimation (10.42 mmt). The more optimistic assumption of red meat 

production growth (1.80% per year) resulted in the estimated exports of U.S. DDGS to be 11.02 
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mmt, approximately a six percent increase from the baseline. Thus, the estimated exports of U.S. 

DDGS to the top six importers in 2020 would reach a level between 9.43 and 11.02 mmt under a 

key assumption that China’s DDGS imports gradually recover as the carryover issue of corn 

alleviates.  

2.7 Conclusions 

This study analyzed the exports of U.S. DDGS, a by-product of corn-based ethanol, since 

marketing of such feedstuff has become increasingly important to both U.S. agricultural and 

biofuel sectors. A commodity-specific gravity model was estimated using the Pseudo-Poisson 

maximum likelihood method for a panel data including 29 importing countries from 2001 

through 2013 to identify the determinants of U.S. DDGS exports. A baseline derived from the 

reduced-form gravity model and two scenarios of U.S. DDGS exports related to meat production 

between 2017 and 2020 were also generated.  

Results suggest that U.S. DDGS exports were impacted by U.S. ethanol production, ad 

valorem tariffs, TBT, and demand for DDGS, such as stock of cattle, red meat production or 

consumption, in the importing countries. Demand for DDGS in importing countries was the most 

influential factor to U.S. DDGS exports. Specifically, a one percent increase in demand for 

DDGS in importing countries leads to about three percent increase in U.S. DDGS exports. Thus, 

U.S. DDGS exports in the outlook was closely related to the annual growth of red meat 

production or stock of cattle. The U.S. ethanol production, as a proxy of the supply of DDGS, 

was also an elastic factor to U.S. DDGS exports. It was also found that TBT adversely impacted 

the exports of U.S. DDGS to a great extent and had larger negative effects on trade compared to 

tariffs.  
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A high growth rate in red meat production (1.80% annually) could lead to an increase of 

U.S. DDGS exports to the top six importers by six percent from the baseline. However, the 

projected exports of U.S. DDGS to the top six importers by 2020 would lower by ten percent 

from the baseline level when considering much lower annual growth rate (0.50% per year) of red 

meat production in those six countries. With a solid growth of meat production in many 

emerging economies, the potential to expand U.S. DDGS should remain strong. 

Some caveats are associated with the estimation in this study. First, using a binary 

variable to account for the effect of TBT is a crude indicator. As suggested by Jayasinghe et al. 

(2010) a better indicator should be constructed by counting the variable utilized as a proxy of 

TBT weighted by their cost incidence if additional data were available. Also, the reduced-form 

of DDGS exports does not capture the full interaction of DDGS and other feedstuffs in the 

market so the estimated baseline outlook is primarily used to evaluate the relative change when 

meat consumption alters.  
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Appendix 

Table 2. 1 Average Quantity of DDGS Imports (in thousands of metric tons) 

Country Years 
Average 

Imports 
  Country Years 

Average 

Imports 

Canada 
2000-2005 49.0 

  Japan 
2000-2005 0.7 

2006-2013 614.2 2006-2013 228.6 

China 
2000-2005 0.0 

  Malaysia 
2000-2005 7.8 

2006-2013 1381.7 2006-2013 46.0 

Colombia 
2000-2005 23.9 

  Mexico 
2000-2005 56.4 

2006-2013 58.0 2006-2013 1241.5 

Costa Rica 
2000-2005 5.8 

  Morocco 
2000-2005 0.9 

2006-2013 68.6 2006-2013 94.8 

Cuba 
2000-2005 1.7 

  Netherlands 
2000-2005 26.3 

2006-2013 91.3 2006-2013 8.7 

Denmark 
2000-2005 78.2 

  Philippines 
2000-2005 2.1 

2006-2013 0.1 2006-2013 105.3 

Egypt 
2000-2005 0.0 

  Portugal 
2000-2005 70.3 

2006-2013 65.5 2006-2013 10.5 

France 
2000-2005 5.6 

  
South 

Korea 

2000-2005 0.9 

2006-2013 8.5 2006-2013 270.9 

Germany 
2000-2005 20.7 

  Spain 
2000-2005 68.4 

2006-2013 1.2 2006-2013 37.9 

Guatemala 
2000-2005 5.7 

  Taiwan 
2000-2005 8.3 

2006-2013 47.3 2006-2013 178.1 

Honduras 
2000-2005 2.6 

  Thailand 
2000-2005 2.1 

2006-2013 27.5 2006-2013 193.5 

Indonesia 
2000-2005 9.7 

  Turkey 
2000-2005 0.0 

2006-2013 166.4 2006-2013 235.0 

Ireland 
2000-2005 238.5 

  
United 

Kingdom 

2000-2005 125.7 

2006-2013 147.7 2006-2013 66.3 

Israel 
2000-2005 11.6 

  Vietnam 
2000-2005 3.4 

2006-2013 136.9 2006-2013 262.4 

Italy 
2000-2005 5.8         

2006-2013 1.7         
Source: USDA- FAS, Global Agricultural Trade System  
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Table 2. 2 Statistics Summary of Dependent and Independent Variables in the Gravity Model of 

U.S. DDGS Exports 

Variable Unit Mean Std. Dev. Min Max 

U.S. DDGS Exports Thousand Metric 

Tons (mt) 

12.6 348.7 0.0 4,441.7 

U.S. Ethanol 

Production 

Millions of 

Gallons 

7,216.5 4,718.1 1,622.3 13,929.1 

Tariffs Ad valorem (%) 2.8 4.8 0.0 32.5 

Real Exchange Rate US$/local 

currency 

0.5 0.6 0.0 1.9 

Technical barriers to 

trade (TBT) 

1: imposing 

TBT; 0: not  

0.1 0.3 0.00 1.0 

U.S. Cattle Stock Millions of 

Heads 

95.0 2.3 90.1 98.2 

Importing Countries 

Cattle Stock 

Millions of 

Heads 

10.8 20.3 0.1 121.3 

U.S. Meat 

Consumption 

Thousand mt 21,302.9 397.1 20,396.9 21,937.9 

Importing Countries 

Meat Consumption 

Thousand mt 3,195.8 8,880.5 70.9 60,357.7 

U.S. Meat Production Thousand mt 21,676.9 824.1 20,437.5 22,816.1 

Importing Countries 

Meat Consumption 

Thousand mt 3,156.2 88,891.8 63.8 59,463.0 

Note: Total number of observations for each variable is 406. 
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Table 2. 3 Poisson Pseudo-Maximum Likelihood Estimation of Gravity Equation Specifications 

with Importer Fixed Effects 

 Specification 1 Specification 2 Specification 3 

Intercept 3.38 (24.23) -46.63 (47.77) -123.53 (74.53)* 

Ln (U.S. ethanol 

production) 
1.10 (0.20)*** 1.05 (0.16)*** 0.81 (0.25)*** 

Ln ((Tariff+1)) -0.31 (0.15)** -0.20 (0.13) -0.27 (0.11)** 

Ln (Real exchange 

rate) 
1.03 (0.96) 0.29 (0.89) 0.29 (0.87) 

Technical barriers to 

trade 
-0.65 (0.20)*** -0.60 (0.20)*** -0.64 (0.19)*** 

Ln (U.S. cattle stock) -2.24 (4.73)     

Ln (Importers cattle 

stock) 
2.79 (0.69)***     

Ln (U.S. meat 

consumption) 
  -0.02 (2.90)   

Ln (Importers meat 

consumption) 
  2.93 (1.58)*   

Ln (U.S. meat 

production) 
    4.41 (4.45) 

Ln (Importers meat 

production) 
    3.17 (1.54)** 

       

R2 0.79 0.83 0.82 

Number of 

Observations 
406 406 406 

Note: Standard errors are in parenthesis. *** Significant at 1%, ** at 5%, and * at 10%. 
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Figure 2. 1 Consumption of U.S. DDGS, MY 2004/05 – MY 2014/15 
Source: USDA ERS, 2016b 
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Figure 2. 2 Composition of major destination markets of U.S. DDGS in 2000 and 2015 
Source: USDA-FAS, Global Agricultural Trade System (GATS) 
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Figure 2. 3 Historical and baseline imports of U.S. DDGS in the top six external markets 
Source: USDA-FAS, Global Agricultural Trade System and the baseline generated from the model (2017-

2020) 
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Figure 2. 4 Historical and simulated U.S. DDGS exports to the top six importers under different 

scenarios 
Source: USDA-FAS, Global Agricultural Trade System and model simulation results 
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Chapter 3: Economic and Environmental Implications of Incorporating 

Distillers’ Dried Grains with Solubles in Feed Rations of Growing and 

Finishing Swine in Argentina 
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Abstract 

Argentinean swine industry has quickly expanded over the past decade and generated a 

strong demand for feedstuffs. The growing supply of distillers’ dried grains with solubles 

(DDGS) from corn-based ethanol industry in Argentina presents a potential to meet the feedstuff 

demand from swine producers. This study determines the effects of feeding DDGS to swine on 

feed rations cost and phosphorus content using optimization models. Results suggest that 

including DDGS in feed rations of swine in their growing to finishing growth stage can 

simultaneously minimize the cost and phosphorus content. Feeding DDGS in swine rations was 

estimated to save the Argentinean swine industry up to US $ 19.21 million annually and reduce 

phosphorus content up to five percent.
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3.1 Introduction 

Argentinean pork consumption has significantly increased in the last decade due to an 

improvement in its price relative to other meat products (La Nacion, 2016). According to the 

Argentinean Ministry of Agroindustry (2016), domestic annual consumption of pork per capita 

increased by 45% between 2011 and 2016, from 8.64 to 12.54 kilograms (kg) per person. 

Additionally, pork exports have also grown by 113% (Argentinean Ministry of Agroindustry, 

2016). To meet the rising demand for pork, Argentinean swine production has grown by 72% 

over the same period (Argentinean Ministry of Agroindustry, 2016).  

Corn has been a primary feedstuff for swine production in Argentina. However, the 

Argentinean biofuels law of 2006, which mandates a blend of ethanol with gasoline of 12%, has 

resulted in an increased amount of corn being diverted to ethanol production. In 2016, corn-

based ethanol accounted for almost 50% of the bioethanol production in Argentina (United 

States Department of Agriculture (USDA), 2016). The Cordoba province produced the most 

corn-based ethanol among the nation in 2016 (see Table 3.1) and it is currently the second largest 

swine producer in Argentina (Argentinean Ministry of Agroindustry, 2016). 

Distillers’ dried grains with solubles (DDGS) is a by-product of corn-based ethanol and a 

potential corn substitute for swine producers in this region. As a livestock feed, DDGS have a 

more concentrated nutritional value relative to traditional feed grains and can be used to meet the 

energy and protein requirements (Dooley, 2008). Studies conducted in various countries have 

shown that incorporating DDGS in swine feed rations can potentially reduce the feed ration costs 

by 3% to 13% (Fabiosa, 2008; Fabiosa et al., 2009; Skinner et al., 2012). However, the amount 

of DDGS to be included in the diet of an animal is conditional on the animal’s ability to digest 

the feedstuff (Hoffman and Baker, 2011). The United States (US) Grains Council (2012) 
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recommends that the DDGS inclusion level of rations for growing and finishing swine should not 

exceed 20% of the total ration. 

Several studies have also evaluated the effects of incorporating DDGS in feed rations on 

the environment. Hünerberg et al. (2013) found that including DDGS in feed rations for growing 

beef cattle could mitigate methane gas emissions. As regards the effect of DDGS on swine diets, 

Trabue et al. (2016) compared the odor and odorous emissions of stored swine manure between a 

corn-based feed ration with a DDGS-based feed ration, and found that including DDGS 

significantly lowered odorant emissions in animal units of hydrogen sulfide and ammonia. 

Additional studies have also found that including DDGS in the diet of growing swine could 

increase the digestion of the organic phosphorus which can reduce the need of adding inorganic 

phosphorus in the feed ration (Pedersen et al., 2007; Widmer et al., 2007). Given that inorganic 

phosphorus is a non-renewable resource, reducing its use in feed rations would have a positive 

impact on the environment sustainability (Suh and Yee, 2011). 

As the potential for replacing corn with DDGS in Argentinean swine production has 

emerged, research is needed to determine the impact of introducing a novel ingredient on feed 

ration cost and the environment. Particularly, there is a growing number of countries that have 

imposed restrictions on nutrient excretion to reduce water pollution (Bridges et al., 1995; Boland 

et al., 1998). This issue is important in the case of swine since about 75% of the phosphorus that 

they ingest is in the form of phytate, which is mostly excreted in their manure (Kemme et al., 

1999).  However, little is known about how incorporating DDGS in swine feed rations will 

impact the environment. Also, the potential impact of adopting DDGS on Argentinean swine 

feed rations cost has yet to be analyzed. 
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Mathematical programming models are commonly used to evaluate the economic and 

environmental effects of different feed rations (Tozer and Stockes, 2001; Yu et al., 2001; 

Castrodeza et al., 2005; Pomar et al., 2007; Fabiosa, 2008; Babic and Peric, 2011). Goal 

programming, or multi-objective linear programming (MOLP) modeling, is commonly used 

when the cost and environmental measurements of the feed ration cannot be simultaneously 

optimized. This linear programming (LP) model allows the decision maker to optimize the 

objectives by assigning weights (preferences) for each objective (Zhang and Rousch, 2002). 

Solutions can be compared across weights to find how sensitive the results are to the assigned 

weights (Zhang and Rousch, 2002). A MOLP model would be an appropriate modeling approach 

to analyze the impact of DDGS on feed ration costs and the phosphorus content ingested by 

swine.  

Therefore, the objective of this study was to estimate the impact of including DDGS on 

the cost and phosphorus content of the feed ration in the Argentinean swine industry. Feed 

rations with and without DDGS were formulated for swine in three growth categories. A MOLP 

model was established to analyze both feed rations using cost minimization and phosphorus 

minimization. The output from the programing models were used to estimate how incorporating 

DDGS as a feedstuff in swine production would impact the aggregate cost and phosphorus 

content ingested by the Argentinean swine industry.  Also, sensitivity analysis was performed to 

derive the demand functions of DDGS for the three growth categories of swine in Argentina and 

to assess the effect of adding an additional constraint to the model to assure a minimum level of 

lysine/energy ratio according to standard industry practices. 
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3.2 Conceptual Framework 

The neoclassical theory of the firm assumes that firms choose inputs in the production 

process that minimize the cost of producing the output (Rubinfeld and Pindyck, 2004). If there 

are N inputs, the production function, 𝐹(𝑥1, … , 𝑥𝑛) describes the maximum output that can be 

produced for every possible combination of inputs. It is assumed that each of the input factors 

have positive but decreasing marginal products (Rubinfeld and Pindyck, 2004). 

The marginal product (𝑀𝑃𝑖) of each of the N inputs can be defined as follows: 

𝑀𝑃𝑖(𝑥1, … , 𝑥𝑛) =  
𝜕𝐹(𝑥1, … , 𝑥𝑛)

𝜕𝑥𝑖
> 0 ;  

𝜕𝑀𝑃𝑖(𝑥1, … , 𝑥𝑛)

𝑥𝑖
< 0; 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑛 (3.2-1) 

When perfect competition in products and in input factors is assumed, i.e. that the price 

of the factors (𝑟𝑖) are given, the cost-minimization problem can be written as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 =  ∑ 𝑟𝑖𝑥𝑖

𝑛

𝑖=1

 (3.2-2) 

Subject to the constraint that a fixed output 𝑄0 can be produced: 

𝐹(𝑥1, … , 𝑥𝑛) =  𝑄0 (3.2-3) 

where 𝐶 is the cost of producing the fixed level of output 𝑄0. 

To determine the firm’s demand for each of the inputs, the values of each 𝑥𝑖 that are 

minimized (3.2-2) subject to the constraint in (3.2-3) are chosen. This optimization problem can 

be solved using the Lagrangian method. Solving the optimization problem, the following 

expression is obtained: 

𝑀𝑃1(𝑥1, … , 𝑥𝑛)

𝑟1
= ⋯ =  

𝑀𝑃𝑁(𝑥1, … , 𝑥𝑛)

𝑟𝑛
 (3.2-4) 
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Equation (3.2-4) states that when a firm is minimizing costs, it will choose the amount of 

each input to equate the ratio of the marginal product of each input with its price. This equality 

also means that in equilibrium, the marginal products of all production inputs must be equal once 

those marginal products are adjusted by the unit cost of each input, otherwise, the firm could 

change its inputs to produce the same output at a lower cost. 

The Lagrange multiplier (λ) can also be employed to express the equality (3.2-4) in a 

different way: 

𝜆 =
𝑟1

𝑀𝑃1(𝑥1, … , 𝑥𝑛)
= ⋯ =

𝑟𝑛

𝑀𝑃𝑛(𝑥1, … , 𝑥𝑛)
 (3.2-5) 

In this case, the Lagrangian multiplier represents the marginal cost of production since it 

shows how much the cost increases if the amount of the output is increased by one unit. 

This conceptual framework can also be used to analyze the case in which a firm intends 

to minimize another variable, such as the total amount of phosphorus in a feed ration. When this 

is the case, the price of the production factors in the equations are replaced by the percentage of 

phosphorus content in each ingredient that can be included in the feed ration. 

3.3 Methods and Model Specification 

3.3.1 Optimization Model 

A MOLP model was formed with one objective to minimize the feed ration cost (𝐶) and 

another objective to minimize the total phosphorus (𝑃) content in the feed ration for three growth 

stages categories: 1) 20 to 50 kg; 2) 50 to 80 kg; and 3) 80 to 120 kg. These growth categories 

were defined following National Research Council (NRC, 1998) recommendations for the 

nutrient requirements of swine.  
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The target value for each objective in the MOLP model was first determined for each 

growth category using two different LP models, which were defined as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚 = ∑ 𝑐𝑖𝑥𝑖𝑚
𝑛
𝑖=1 ,             𝑚 = 1,2,3  (3.3.1-1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑚 = ∑ 𝑝𝑖𝑥𝑖𝑚
𝑛
𝑖=1 ,             𝑚 = 1,2,3  (3.3.1-2) 

where 𝑐𝑖 is the cost of the ingredient 𝑖 (𝑖 = 1, … , 𝑛) in U.S. $/kg for each growth category 

𝑚 (𝑚 = 1,2,3); 𝑝𝑖 is the % of phosphorus in ingredient 𝑖, and 𝑥𝑖𝑚 is the % of ingredient 𝑖 in the 

feed ration for each growth category. The two sole-objective functions for each growth stage, 𝑚, 

were optimized under the following constraints: 

∑ 𝑥𝑖𝑚 = 1𝑛
𝑖=1   (3.3.1-3) 

𝑙𝑏𝑗𝑚 ≤ ∑ 𝑓𝑖𝑗𝑥𝑖𝑚
𝑛
𝑖=1 ≤ 𝑢𝑏𝑗𝑚 ,      𝑗 = 1, … , 𝑘,           (3.3.1-4) 

0 ≤ 𝑥𝑖𝑚 ≤ 𝑢𝑏𝑖𝑚,                          𝑖 = 1, … , 𝑛,          (3.3.1-5) 

where 𝑓𝑖𝑗 is the proportion of nutrient content 𝑗 (𝑗 = 1, … , 𝑘) observed in ingredient 𝑖; 𝑙𝑏𝑗𝑚 and 

𝑢𝑏𝑗𝑚 are the lower and the upper bounds of nutrient 𝑗 in the feed ration for growth category m, 

respectively. Equation (3.3.1-3) assures the ingredients sum to one. Equation (3.3.1-4) requires 

that the feed ration comply with the minimum and maximum amount of nutrients necessary for 

each growth category. Equation (3.3.1-5) limits the maximum amount of ingredient 𝑖 that can be 

used in the feed ration for each growth category of swine.  

After solving the two separate linear programming models, the target values for cost (𝐶𝑚
∗ ) and 

phosphorus content (𝑃𝑚
∗ ) were obtained, and the following multi-objective programming model 

was solved using the MINIMAX5 algorithm for each growth category of swine as shown in 

Equation 3.3.1-6:  

                                            
5 The MINIMAX algorithm minimizes the maximum weighted deviation from the objectives (Ragsdale, 2006). 
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𝑀𝑖𝑛 𝑄𝑚,         𝑚 = 1, 2, 3 (3.3.1-6) 

subject to constraints in Equations 3.3.1-3 to 3.3.1-5 and additional constraints below: 

𝑤𝐶𝑚(𝐶𝑚−𝐶𝑚
∗ )

𝐶𝑚
∗ ≤ 𝑄𝑚 ,                (3.3.1-7) 

𝑤𝑃𝑚(𝑃𝑚−𝑃𝑚
∗ )

𝑃𝑚
∗ ≤ 𝑄𝑚 ,                (3.3.1-8) 

𝑤𝐶𝑚
, 𝑤𝑃𝑚

≥ 0 (3.3.1-9) 

where 𝑄𝑚 is a parameter that ensures the solution minimizes the maximum deviation from the 

target values for each growth category and, 𝑤𝐶𝑚
 and 𝑤𝑃𝑚

 are the weights (preferences) assigned 

to each objective. Equations 3.3.1-7 and 3.3.1-8 measure the percentage deviations from the 

target values, while Equation 3.3.1-9 is a non-negative constraint for the objective weights. 

To assess the impact of using DDGS, a feed ration that contained corn and soybean meal, 

along with typical supplements in swine feed ration for each growth category of growth was 

formulated. The alternative model included the same ingredients in the baseline model plus 

DDGS. It was assumed that synthetic phytase was not included in the feed ration to improve the 

absorption of phosphorus. 

3.3.2 Estimating Potential Use of DDGS and Feedstock Replacement in Argentinean 

Swine Industry 

The results from the optimization models in Equations 3.3.1-1 to 3.3.1-9 were used to 

estimate the displacement of soybean meal and corn in the Argentinean swine industry with the 

inclusion of DDGS in the feed rations. The total quantity of feedstuffs demanded by the swine 

industry in a given year was first determined. The total number of swine harvested in Argentina 

in 2016 (5.99 million head) was used to approximate the total number of finished pigs 
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(Argentinean Ministry of Agroindustry, 2016)6. The days on feed and daily intake were found 

following NRC (1998).  The assumptions used were that growing swine need to gain 30 kg of 

live weight, or 26.26 pounds of carcass fat-free lean weight to progress from growth category 1 

(20-50 kg) to category 2 (50-80 kg), and from category 2 to category 3 (80-120 kg). The 

assumption was also made that it would require 37 days on feed for swine within each of the first 

and second growth categories, and 49 days within the third category. Daily as-fed feed intake 

quantities were assumed to average 1.855 kg, 2.575 kg, and 3.075 kg for growth categories 1, 2, 

and 3, respectively (NRC, 1998). 

Total annual feed consumption by the Argentinean swine industry was found for each 

growth category by multiplying the total number of swine in Argentina by the number of days 

needed for swine to increase their weight to the next growth category and the daily feed intake 

needed in the current growth category. Then, the composition of the optimal feed rations was 

calculated for each of the growth categories. In addition, the cost savings and the phosphorus 

reduction from adding DDGS in feed rations for the Argentinean swine industry were generated. 

The difference in the cost and phosphorus content in the feed rations with and without DDGS 

were multiplied by the total feed demand from the industry, assuming a sufficient amount of 

DDGS were available for all feed rations used in the swine industry. 

3.3.3 Sensitivity Analysis  

3.3.3.1 Sensitivity Analysis of DDGS Price  

DDGS price in Argentina could vary as a result of an expected higher cost of natural gas, 

which is a key input to corn-based ethanol refinement, and thus the production of DDGS. 

                                            
6 Since the data provided by the Ministry of Agroindustry does not identify the classification of swine, it was 

assumed that the reported number of swine slaughtered in 2016 was a proxy number of finished pigs. 



www.manaraa.com

50 

Raising the price of natural gas has been recently announced by the Argentinean government as 

part of its plan to deregulate the energy prices after years of subsidizing them (Reuters, 2016; 

Argentinean Ministry of Energy, 2017).  Therefore, a sensitivity analysis was conducted to 

determine how the changes in DDGS price impacts the demand for DDGS in swine feed rations, 

while maintaining constant prices for all other feed ingredients. The range of DDGS price in the 

sensitivity analysis was determined by the allowable increase and allowable decrease for DDGS 

price obtained from each optimization. 

3.3.3.2 Inclusion of a Lysine/Energy Constraint  

Standard industry practices suggest that not only the absolute amount of lysine and 

energy are important to be met in a feed ration, but also their relative values. According to 

Castrodeza et al. (2005) there is a complementary relationship between the amount of lysine and 

energy included in the feed rations since both are necessary for the animal growth. If there is an 

excess of lysine in the feed ration with respect to the energy content, the lysine may not be 

incorporated and consequently excreted. On the other hand, if there is an excess of energy with 

respect to the amount of lysine, this excess could provoke an increase in the fat tissue of the 

animal.   

Therefore, a new constraint requiring increasing levels of lysine/energy 

grams/Megajoules (g/MJ) was added to the models for each of the growth categories of 

swine, 𝑚. This new constraint is represented by Equation (3.3.3.2-1).  

∑ 𝑥𝑖𝑚
𝑛
𝑖=1 𝑙𝑖

∑ 𝑥𝑖𝑚𝑒𝑖
𝑛
𝑖=1

≥
𝑙∗

𝑒∗

𝑔

𝑀𝐽
,    𝑖 = 1, … , 𝑛 (3.3.3.2-1) 
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where 𝑥𝑖𝑚 is the proportion of ingredient i in a feed ration of one kg for each of the growth 

categories of swine, and parameters li and ei are the lysine (in grams) and digestible energy 

content (in megajoules) observed in the ingredient i, respectively. 

The new constraint required a minimum amount of lysine/energy (
𝑙

𝑒
) in grams per 

megajoules (g/MJ) to comply with the standard industry practices (
𝑙∗

𝑒∗
). The optimization models 

were solved using different levels of  
𝑙∗

𝑒∗ and were then compared. Given the non-linearity of the 

new constraint, the models were solved using non-linear programming. 

3.4 Data 

The prices of Argentinean corn, soybean meal and DDGS were collected from an 

Argentinean broker of grains and a corn-based ethanol plant (Personal communication with 

Grimaldi Grassi S.A. and Picatto, 2017). The prices of the other ingredients included in the feed 

rations (i.e. monocalcium phosphate, calcium carbonate, salt, vitamin and mineral premix and, 

synthetic L-lysine) were provided by industry sources. It was assumed that the representative 

compounder was located in Villa Maria (Córdoba, Argentina). Therefore, the prices of the 

feedstuffs and the supplements were the final prices of these products delivered to this location. 

The prices included the value-added tax (VAT) and were recorded on February 15th, 2017. The 

prices in Argentinean Pesos (ARS) were converted to US dollars at the exchange rate of 15.6 

ARS per US dollar (Banco Nacion, 2017).  

The nutritional attributes of Argentinean DDGS were provided by ACA Bio Coop. Lda. 

(Picatto, Personal communication, 2016), while the related information of soybean meal and 

corn was taken from NRC (1998). The nutritional profiles of the supplements were provided by 

the companies that market these products in Argentina. The nutritional requirements for swine in 
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the three growth categories that were analyzed in this study (i.e. 20-50 kg, 50-80 kg and, 80-120 

kg) were taken from NRC (1998). Finally, the annual production of DDGS in Argentina was 

provided by the Rosario Stock Exchange (Personal communication, 2017) and the number of 

swine slaughtered in 2016 was recorded from the Argentinean Ministry of Agroindustry (2016). 

Table 3.2 shows the ingredients that were included in evaluated swine feed rations along 

with their price that was estimated at a 90% dry matter basis and Table 3.3 their nutritional 

profiles. 

3.5 Results and Discussion 

The trade-off between cost and phosphorus minimization was first examined for the feed 

ration without DDGS. Figure 3.1a illustrates the conflict relationship between the two objectives 

using growth category 1 (20-50 kg) as an example. In a feed ration that did not include DDGS, 

minimizing the cost increased phosphorus content, while minimizing the phosphorus content 

increased the cost of the feed ration. When DDGS were included in the feed ration, both 

objectives were simultaneously achieved, hence a single optimization solution observed in 

Figure 1b. Similar relationships between cost and phosphorus were found for the other growth 

stages. 

Therefore, weights were not assigned to the MOLP model since there were no trade-offs 

between cost and phosphorus in the feed ration with DDGS. Results from the MOLP model for a 

ration with DDGS were identical to results from the two separate LP models. This shows that 

adding DDGS in swine feed rations helps feed ration decision in terms of lowering cost and the 

potential for surface-water pollution caused by phosphorus excretion in the manure 

Table 3.6 shows the cost and phosphorus content from the optimization models by feed 

rations and growth categories. Comparing the two feed rations when minimizing the cost, the 
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cost and the total phosphorus of the feed rations with DDGS were 3.97−6.36%, and 5.69 −6.59% 

lower, respectively. Similarly, when minimizing the total phosphorus in swine feed rations, the 

feed rations with DDGS were 7.97−15.37% cheaper and had 4.36−5.51% less phosphorus 

content across all growth categories than the feed rations without DDGS. The cost savings in 

swine feed rations determined in this study are consistent with Fabiosa (2008), which found a 

saving of 2.64−9.88% in the feed rations for the finishing hogs in the United States. 

3.5.1 Estimated Potential Use of DDGS for Argentinean Swine Industry 

Table 3.7 presents the proportions of each ingredient in the optimal feed ration without 

DDGS and with DDGS when the objective was only to minimize the total cost. DDGS were 

found to reduce soybean meal and corn usage by 10.01−12.54% and 6.56–9.24%, respectively, 

for the three growth categories.  

Given the assumed total number of swine (5.99 million) and the feed intake at each 

growth category, annual feedstuff demand was estimated to be around 1.87 million metric tons 

(mmt), which includes 407,061 metric tons (mt) for the growth category 1, 565,057 mt for 

growth category 2 and, 899,703 mt for growth category 3. If a 20% of DDGS were included in 

the feed rations of swine in the three growth categories, the annual demand for DDGS for the 

Argentinean swine industry would be up to 374,364 mt of DDGS. In that case, the use of DDGS 

could replace approximately 209,434 mt of soybean meal and 147,270 mt of corn (see Table 3.8) 

assuming the relative prices of the other feedstuffs and supplements remain constant and the 

supply of DDGS is sufficient to meet the demand of Argentinean swine industry.  
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3.5.2 Estimated Potential Cost and Phosphorus Reduction in the Argentinean Swine 

Industry 

Table 3.9 summarizes the potential reduction in cost and phosphorus content from 

including DDGS in feed rations for the Argentinean swine industry. With DDGS in the feed 

rations for the 20-50 kg growth category of swine, feed costs could be reduced almost US $ 3.4 

million (0.0083 US $/kg × 407,061 mt/year × 1,000 kg/mt) under the assumption of stable 

relative price of feedstuffs and sufficient supply of DDGS for the Argentinean swine industry. 

Similarly, cost savings could reach more than US $ 4.8 million for swine in growth category 50-

80 kg and nearly US $ 11 million in growth category 3. In total, the swine industry could save up 

to US $ 19.21 million if DDGS was included in the feed rations for the three growth categories 

of swine. 

Similarly, the potential annual reduction in total phosphorus by using DDGS is presented 

in Table 3.9. Including DDGS in the feed rations for swine between 20-50 kg could lower total 

phosphorus about 119 mt per year (0.0292% × 407,061 mt/year) or 5.51% of total phosphorus. 

Phosphorus reduction in feed rations could be nearly 116 mt annually for swine between 50-80 

kg, and reach to 196 mt for swine between 80-120 kg. Thus, including DDGS in the feed rations 

would reduce the phosphorus content in feed by about 430 mt per year (or 5%) relative to rations 

without using DDGS. 

These estimates imply that adopting DDGS in the feed rations of swine in the three 

growth categories can potentially benefit the Argentinean swine industry in terms of both cost 

and quantity of phosphorus. The lower feeding costs would further enhance the competitiveness 

of Argentinean pork production to meet their growing domestic and international demand. In 

addition, lowering the total phosphorus use could help reducing the consumption of inorganic 
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phosphorus by the swine industry in Argentina and decreasing pollution from swine manure. It 

would also help the industry comply with environmental regulations. Argentina does not 

currently regulate the maximum amount of phosphorus that could be excreted; however, there is 

a possibility that Argentina will impose similar regulations on phosphorus excretion as observed 

in the European Union and the US (Bridges et al., 1995; Boland et al., 1998) given the projected 

growth in its pork production.  

3.5.3 Sensitivity Analysis 

3.5.3.1 Sensitivity Analysis of DDGS Price 

Figure 3.2 shows the quantity of DDGS that would be feed in the Argentinean swine 

industry by growth category under different price scenarios. For swine between 20-50 kg (Figure 

3.2a), DDGS was not included in the feed rations when its price was greater than US $ 

252.72/mt. When the price was lowered to US $ 240.61-252.72/mt, DDGS consisted of 1% of 

the feed rations, implying about 4,100 mt of DDGS per year (i.e. 1% × 407,061 mt/year of total 

feed for swine at 20-50 kg, see Table 3.8) were feed. When the price fell between US $ 

239.41−240.60/mt, approximately 10,310 mt of DDGS would be feed annually to swine between 

20-50 kg. When prices decreased to range US $ 232.21−239.40/mt, DDGS accounted for 17.5% 

of the feed ration, which suggests about 72,561 mt of DDGS per year were needed for swine at 

20-50 kg. As the price of DDGS was lower than US $ 232.20/mt, a maximum 20% of DDGS 

that can be digested by swine was included in the feed ration. It implies that a total of 81,412 mt 

of DDGS would be demanded for swine category 20-50 kg. As the inclusion rate of DDGS in 

feed rations could not exceed 20%, decreasing the price further from US$ 232.20/mt would not 

allow the model to feed more DDGS. The price of DDGS in Argentina was about US $198/mt in 



www.manaraa.com

56 

2017 (or US $0.198/kg at 90% dry matter basis in Table 3.2), denoted by the dash line in the 

figure, thus DDGS was used at 20% in the optimal feed rations. 

Similarly, Figure 3.2b shows the demand for DDGS for swine at 50-80 kg reached zero 

when the price was higher than US $ 252.72/mt. As price decreased, the quantity of feed 

increased similar to the growth category of 20-50 kg. At the current price, annual DDGS feed 

demand was 113,011 mt for swine weighting 50-80 kg in the Argentinean swine industry. 

 For the heaviest growth category of swine (80-120 kg), DDGS exited from the feed 

rations when the price was higher than US $ 325.86/mt (Figure 3.2c). When the price declined to 

US $ 232.20/mt, the maximum amount of DDGS that could be included in a feed ration was 

used. This implies that the demand for DDGS in the growth category of 80-120 kg would be less 

sensitive to increases in the DDGS price. 

Changes in DDGS price likely imply that corn and soybean meal prices would also 

change, thus the use of the corn and soybean meal could also vary as the DDGS price varies. 

Figure 3.3 shows the use of DDGS, soybean meal and corn for swine feed rations by growth 

category associated with the optimization output from the sensitivity analysis in DDGS price. 

For the first growth category, the proportion of DDGS and soybean meal use is quite similar 

when the price of DDGS was below US $ 232.2/mt. However, when DDGS price fell in the 

range of US $ 239.41-240.6/mt, DDGS use rapidly decreased from 20% to 2.53% and was 

mostly replaced with soybean meal use that increased from 15.61% to 24.39% (Figure 3.3a). 

Similar changes also occurred for the second growth category (Figure 3.3b) and the third growth 

category (Figure 3.3c). As the price of DDGS increased, both soybean meal and con usage 

expanded. However, in the third growth category (80-120 kg) (Figure 3.3c), when DDGS price 

was over US $ 240.60/mt, the lower use of DDGS was compensated with only increases in 
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soybean meal use since the maximum amount of corn (80%) was already included in the feed 

rations. 

3.5.3.2 Inclusion of a Lysine/Energy Constraint 

Figure 3.4a shows how the cost reduction observed in a feed ration containing DDGS 

with respect to a feed ration without DDGS in the three growth categories of swine would be 

affected by the addition of a constraint that requires increasing levels of lysine/energy. For the 

first and second growth category of swine there is not a significant deterioration in the cost 

reduction. However, for the third growth category, increasing levels of lysine/energy required 

deteriorates the cost reduction from 6.36% to 5.21%. On the other hand, when the reduction in 

the total phosphorus content was compared across the three growth categories given different 

levels of lysine/energy required, no changes in their values were found for any of the growth 

categories (Figure 3.4b).  

3.6 Conclusions 

This study evaluated the cost and phosphorus advantage of including DDGS in feed 

rations for growing and finishing swine in Argentina. Results suggest that including DDGS in 

the feed rations achieved the goals of cost minimization and phosphorus minimization in feed 

rations concurrently; hence, avoiding the trade-off between cost and phosphorus content of feed 

rations when DDGS is not used. Also, the cost and the total phosphorus of the feed rations 

including DDGS were 3.97-6.36% and 5.69-6.59% lower, respectively, compared to the feed 

rations without DDGS. Using the estimated reduction in cost and phosphorus, along with the 

amount of feed consumed by swine at different growth categories, it was estimated that the swine 

industry could potentially achieve cost savings approaching US $19.21 million and a 5% 
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reduction of total phosphorus if DDGS was adopted at 20% in the feed rations for all growing to 

finishing swine in Argentina.  

In addition, including DDGS in the feed rations for the three growth categories in the 

swine industry could replace the use of corn and soybean meal by 147,270 mt and 209,434 mt, 

respectively. Given the recent increase in Argentinean corn-based ethanol production, utilization 

of DDGS can mitigate the price pressure on corn and stabilize the cost of the livestock and 

poultry industry in Argentina. 

The sensitivity analysis of DDGS price suggest that the demand for DDGS in swine feed 

rations varied by growth category. DDGS demand for swine weighting between (80-120 kg) was 

less elastic in comparison with the smaller weight categories. Also, the addition of an extra 

constraint in the model to assure minimum levels of lysine/energy ratios produced not significant 

changes in the minimum cost of the feed rations for the first and second growth categories. For 

the heaviest category, however, requiring increasing amounts of lysine/energy deteriorated the 

cost reduction observed in a feed ration when DDGS was included. 

A few caveats are related to this study. The estimated swine industry-wide cost savings or 

phosphorus reduction reported herein was based on the assumption that there would be sufficient 

DDGS supply to swine and other livestock industries. Given the current biofuel mandate in 

Argentina, it is expected that the corn ethanol industry will continue to grow, hence, a greater 

supply of DDGS. Also, the relative price advantage of DDGS over other feedstuffs may not 

remain if the natural gas industry undergoes deregulation in the future. 
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Appendix 

Table 3. 1 Argentinean DDGS Production and Corn Used for Ethanol 

Corn-based Ethanol Plants Province 
DDGS Production 

(mt) 

Corn Used for 

Ethanol (mt) 

Promaiz S.A. Córdoba 108,626 350,405 

ACA Bio Coop. Lda. Córdoba 106,297 342,893 

Bioetanol Rio IV S.A. Córdoba 52,269 168,610 

Diaser S.A. San Luis 67,308 217,123 

Vicentin S.A.I.C. Santa Fe 45,124 145,563 

Others  2,728 8,880 

Total  382,352 1,233,393 
Source: Rosario Stock Exchange (Personal communication, 2017). 
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Table 3. 2 Price of Feedstuffs and Supplements in February 2017 at a 90% Dry Matter Basis 

Ingredient US $/kg 

Soybean meal 0.315 

Corn 0.165 

DDGS 0.198 

Monocalcium phosphate 0.839 

Calcium carbonate 0.108 

Salt 0.220 

Vitamins and minerals premix 2.758 

L-lysine (78%) 1.857 
Source: Picatto, Goñi, Dansa S.A., Grimaldi Grassi S.A., Quimica Oeste and Verdol S.A. (Personal 

communication, 2017). 
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Table 3. 3 Nutritional Profile of Feedstuffs and Supplements 

Attributes Unit 
Soybean 

Meal 
Corn DDGS 

Monocalcium 

Phosphate 

Calcium 

Carbonate 
Salt 

Vitamin 

and 

Mineral 

Premix 

L-lysine 

(78%) 

Dry Matter % 90.00 89.00 88.13 100.00 100.00 100.00 100.00 98.50 

Digestible Energy kcal/kg 3,685 3,525 3,322     4,900 

Metabolizable Energy  kcal/kg 3,380 3,420 3,156 
    

3,950 

Crude Protein % 47.50 8.30 26.65 
    

94.50 

Dry matter % 90.00 89.00 88.13 100.00 100.00 100.00 100.00 98.50 

Crude fat % 3.00 3.90 10.67 
     

Lysine % 3.02 0.26 0.93 
    

78.00 

Methionine+Cysteine % 1.41 0.36 1.04 
     

Threonine % 1.85 0.29 0.96 
     

Tryptophan % 0.65 0.06 0.23 
     

Calcium % 0.34 0.03 0.01 20.50 38.60 
   

Phosphorus total % 0.69 0.28 0.76 20.00 
    

Phosphorus avail % 0.16 0.04 0.59 20.00 
    

Sodium % 0.02 0.02 0.25 
  

38.40 
  

Chlorine % 0.05 0.05 0.20 
  

57.60 
 

19.30 

Magnesium % 0.30 0.12 0.19 
     

Potassium % 2.14 0.33 0.99 
     

Copper mg 20.00 3.00 57.00 
   

9,000 
 

Iodine mg 
      

250 
 

Iron mg 176.00 29.00 257.00 
   

28,000 
 

Manganese mg 36.00 7.00 24.00 
   

20,200 
 

Selenium mg 0.27 0.07 0.39 
   

150 
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Table 3. 3 Continued 

Attributes Unit 
Soybean 

Meal 
Corn DDGS 

Monocalcium 

Phosphate 

Calcium 

Carbonate 
Salt 

Vitamin 

and 

Mineral 

Premix 

L-lysine 

(78%) 

Zinc mg 55.00 18.00 41.00    61,500  

Vitamin A IU 
 

0.00 0.00 
   

2,200,000 
 

Vitamin D3 IU 
 

0.00 0.00 
   

500,000 
 

Vitamin E IU 
 

8.30 0.00 
   

12,000 
 

Vitamin K mg 
 

0.00 0.00 
   

1,100 
 

Biotin mg 0.26 0.06 0.78 
     

Choline mg 2,731 620 2,637 
     

Folacin mg 1.37 0.15 0.90 
   

200 
 

Niacin  mg 22.00 24.00 75.00 
   

11,000 
 

Pantothenic acid mg 15.00 6.00 14.00 
   

7,000 
 

Riboflavin mg 3.10 1.20 8.60 
   

2,200 
 

Thiamin mg 3.20 3.50 2.90 
     

Vitamin B6 mg 6.40 5.00 8.00 
     

Vitamin B12 mcg 0.00 0.00 0.00 
   

9,000 
 

Linoleic acid % 0.60 1.92 2.15 
     

Source: National Research Council (1998), Picatto, Goñi, Dansa S.A., Grimaldi Grassi S.A., Quimica Oeste and, Verdol S.A. (Personal 

communication, 2016, 2017). 



www.manaraa.com

68 

Table 3. 4 Nutritional Composition of the Feed Rations a 90% Dry Matter Basis Without DDGS 

  Growth Category   
1 2 3 

Metabolizable Energy (kcal/kg) 3268.49 3278.38 3275.94 

Crude Protein (%) 18.00 15.50 14.23 

Lysine (%) 0.96 0.78 0.69 

Methinine+cystine (%) 0.61 0.55 0.51 

Threonine (%) 0.68 0.58 0.53 

Tryptophan (%) 0.21 0.17 0.15 

Calcium (%) 1.43 1.38 1.33 

Phosphorus total (%) 0.54 0.48 0.43 

Phosphorus avail (%) 0.23 0.19 0.15 

Sodium (%) 0.10 0.10 0.21 

Chlorine (%) 0.17 0.17 0.34 

Magnesium (%) 0.16 0.15 0.14 

Potassium (%) 0.78 0.66 0.61 

Copper mg 17.23 11.46 10.91 

Iodine mg 0.28 0.15 0.15 

Iron mg 96.57 72.63 67.86 

Manganese mg 36.58 24.23 23.29 

Selenium mg 0.29 0.19 0.19 

Zinc mg 95.07 60.74 59.53 

Vitamin A IU 2444.44 1300.00 1300.00 

Vitamin D3 IU 555.56 295.45 295.45 

Vitamin E IU 19.16 13.47 13.73 

Vitamin K mg 1.22 0.65 0.65 

Biotin mg 0.11 0.10 0.09 

Choline g 1135.22 1000.96 932.26 

Folacin mg 0.68 0.50 0.46 

Niacin mg 17.86 10.72 10.01 

Pantothenic acid mg 15.84 11.63 11.33 

Riboflavin mg 4.08 2.82 2.76 

Thiamin mg 3.28 3.31 3.31 

Vitamin B6 mg 5.15 5.07 5.02 

Vitamin B12 mcg 10.00 5.32 5.32 

Linoleic acid (%) 1.50 1.59 1.63 

Note: Growth category 1 is for swine weighting 20-50 kg, category 2 for swine weighting 50-80 kg and 

category 3 for swine between 80-120 kg.
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Table 3. 5 Nutritional Composition of the Feed Rations a 90% Dry Matter Basis With DDGS 

  Growth Category   
1 2 3 

Metabolizable Energy (kcal/kg) 3265.00 3265.00 3265.00 

Crude Protein (%) 18.00 15.50 13.20 

Lysine (%) 0.95 0.75 0.60 

Methinine+cystine (%) 0.65 0.58 0.52 

Threonine (%) 0.66 0.56 0.47 

Tryptophan (%) 0.18 0.15 0.11 

Calcium (%) 1.03 1.08 1.11 

Phosphorus total (%) 0.50 0.45 0.40 

Phosphorus avail (%) 0.23 0.20 0.17 

Sodium (%) 0.10 0.10 0.10 

Chlorine (%) 0.16 0.16 0.16 

Magnesium (%) 0.16 0.15 0.14 

Potassium (%) 0.73 0.62 0.51 

Copper mg 26.36 20.61 19.61 

Iodine mg 0.28 0.15 0.15 

Iron mg 127.78 103.96 95.28 

Manganese mg 37.16 24.83 23.11 

Selenium mg 0.33 0.24 0.23 

Zinc mg 96.17 61.84 59.65 

Vitamin A IU 2444.44 1300.00 1300.00 

Vitamin D3 IU 555.56 295.45 295.45 

Vitamin E IU 18.43 12.71 13.19 

Vitamin K mg 1.22 0.65 0.65 

Biotin mg 0.23 0.22 0.21 

Choline g 1334.25 1201.28 1076.44 

Folacin mg 0.71 0.53 0.46 

Niacin mg 30.66 23.55 22.25 

Pantothenic acid mg 16.60 12.39 11.86 

Riboflavin mg 5.38 4.12 4.01 

Thiamin mg 3.23 3.25 3.26 

Vitamin B6 mg 5.67 5.58 5.49 

Vitamin B12 mcg 10.00 5.32 5.32 

Linoleic acid (%) 1.70 1.78 1.86 
Note: Growth category 1 is for swine weighting 20-50 kg, category 2 for swine weighting 50-80 kg and 

category 3 for swine between 80-120 kg.
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Table 3. 6 Payoff Table of Feed Rations Excluding and Including DDGS 

 
  

Excluding 

DDGS 

Including 

DDGS 
Difference 

Growth 

Category 

 
Unit Min C Min P Min C Min P Min C Min P 

1 
C US $/kg 0.210 0.219 0.202 0.202 -3.97% -7.97% 

P % 0.535 0.529 0.500 0.500 -6.59% -5.51% 

2 
C US $/kg 0.198 0.212 0.189 0.189 -4.33% -10.92% 

P % 0.477 0.471 0.450 0.450 -5.69% -4.36% 

3 
C US $/kg 0.192 0.212 0.180 0.180 -6.36% -15.37% 

P % 0.428 0.422 0.400 0.400 -6.44% -5.16% 

Note: C stands for cost, and P stands for phosphorus. Growth category 1 is for swine weighting 20-50 kg, 

category 2 for swine weighting 50-80 kg and category 3 for swine between 80-120 kg. 
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Table 3. 7 Feed Rations for Swine in Three Growth Categories by Minimizing Cost 

Growth 

Category  
SM Corn DDGS MP CC Salt V&M L 

Feed ration excluding DDGS (%) 

1 25.62 70.25 - 0.81 3.00 0.21 0.11 0.00 

2 19.20 76.89 - 0.65 3.00 0.21 0.06 0.00 

3 15.97 80.00 - 0.47 3.00 0.50 0.06 0.00 

Feed ration including DDGS (%) 

1 15.61 61.39 20.00 0.34 2.29 0.09 0.11 0.17 

2 9.32 67.64 20.00 0.22 2.53 0.09 0.06 0.14 

3 3.43 73.44 20.00 0.09 2.73 0.09 0.06 0.15 
Note: SM, MP, CC, V&M, L stands for soybean meal, monocalcium phosphate, calcium carbonate, 

vitamins and minerals and, L-lysine (78%), respectively. Growth category 1 is for swine weighting 20-50 

kg, category 2 for swine weighting 50-80 kg and category 3 for swine between 80-120 kg. 

  



www.manaraa.com

72 

Table 3. 8 Estimated Corn and Soybean Meal Displacement in Argentinean Swine Feed Rations 

 Growth Category  

 1 2 3 Total 

Days of Feeding§ 36 19/29 36 19/29 48 7/8 122 12/65 

Swine Stock in 2016* 5,986,561 5,986,561 5,986,561 5,986,561 

Feed Intake (kg/day)§ 1.855 2.575 3.075  

Total Feed (mt/year) 407,061 565,057 899,703 1,871,821 

Soybean Meal Replaced (mt/year) 40,756 55,817 112,861 209,434 

Corn Replaced (mt/year) 36,065 52,227 58,978 147,270 
Source: §NRC (1998), *Argentinean Ministry of Agroindustry (2016). Growth category 1 is for swine 

weighting 20-50 kg, category 2 for swine weighting 50-80 kg and category 3 for swine between 80-120 

kg. 
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Table 3. 9 Cost Savings and Phosphorus Reduction for the Argentinean Swine Industry if DDGS 

is used in the Feed Rations 

  Growth Category  

 Unit 1 2 3 Total 

Cost Savings 

Cost of Feed Ration without 

DDGS  US $/kg 0.2099 0.1978 0.1919  

Cost of Feed Ration with 

DDGS  US $/kg 0.2016 0.1893 0.1797  

Cost Savings from Using 

DDGS  US $/kg 0.0083 0.0086 0.0122  

Estimated Savings for the 

Industry US $ 3,393,126 4,838,517 10,976,510 19,208,153 

Phosphorus Reduction      

P in the Feed Ration without 

DDGS % 0.5292 0.4705 0.4218  

P in the Feed Ration with 

DDGS % 0.5000 0.4500 0.4000  

Reduction of P  % 0.0292 0.0205 0.0218  

P in the Feed Ration without 

DDGS  mt 2,154.04 2,658.64 3,794.56 8,607.24 

P in the Feed Ration with 

DDGS  mt 2,035.30 2,542.76 3,598.81 8,176.87 

Reduction of P  mt 118.73 115.88 195.75 430.37 

Reduction of P  % 5.51 4.36 5.16 5.00 

Note: P stands for Phosphorus. Growth category 1 is for swine weighting 20-50 kg, category 2 for swine 

weighting 50-80 kg and category 3 for swine between 80-120 kg.  
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Figure 3. 1 Trade-off between cost (US$/kg) and phosphorus content (%) in the feed rations for 

swine in growth category 1 (20-50 kg) without and with DDGS. 

 



www.manaraa.com

75 

 
 

 
 

 
Figure 3. 2 DDGS demand from the Argentinean swine industry for each growth category and 

price of DDGS (February, 2017) 
Note: The dash line shows the current price of DDGS at a 90% dry matter basis (198 US $/mt). Growth 

category 1 is for swine weighting 20-50 kg, category 2 for swine weighting 50-80 kg and category 3 for 

swine between 80-120 kg. 
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Figure 3. 3 Composition of the feed rations for each category of growth of swine given different 

DDGS price ranges. 

Note: Growth category 1 is for swine weighting 20-50 kg, category 2 for swine weighting 50-80 kg and 

category 3 for swine between 80-120 kg 
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Figure 3. 4 Effect of the addition of a lysine/energy (L/E) constraint to the cost and phosphorus 

content in the feed rations of swine by growth category. 
Note: Growth category 1 is for swine weighting 20-50 kg, category 2 for swine weighting 50-80 kg and 

category 3 for swine between 80-120 kg 
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Chapter 4: Conclusions 
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To support the financial stability of U.S. ethanol industry and enhance the exports of U.S. 

agricultural products, the determinants of the U.S. DDGS exports were identified using a 

commodity-specific gravity model. The Pseudo-Poisson maximum likelihood method was 

applied to a panel data including 29 importing countries from 2001 through 2013. It was found 

that the variables that account for the market size in the importing countries had a significant 

positive effect on U.S. DDGS exports. The export elasticities of the demand for DDGS were 

elastic with the elasticities around three, implying that a one percent increase in the stock of 

cattle, consumption of red meat, or the production of red meat in the importing countries (proxies 

of the demand size) would increase the demand for U.S. DDGS by about a three percent. The 

presence of non-tariffs barriers to trade were also an important factor that affects the U.S. export 

demand of DDGS. If a country filed a notification of a technical barrier of trade to the WTO, 

their imports of DDGS were 45−48 percent lower than a country that had not filed any.  

The coefficients obtained from the gravity model were also employed to develop a 

baseline for U.S. DDGS exports to major international buyers. A scenario related to the impact 

of diverse growing rates of meat production in the importing countries of DDGS exports was 

also conducted. It was found that a high growth rate in red meat production (1.80 percent 

annually) could lead to an increase of U.S. DDGS exports to the top six importers by six percent 

from the baseline. However, the projected exports of U.S. DDGS to the top six importers by 

2020 would be lower by ten percent from the baseline level when considering much lower 

annual growth rate (0.50 percent per year) of red meat production in those six countries. With a 

solid growth of meat production in many emerging economies, the potential to expand U.S. 

DDGS is expected to remain strong. 
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A recent development of the ethanol industry and a surging demand for pork meat have 

resulted in an opportunity of adopting DDGS in swine feed rations in Argentina. To evaluate the 

potential economic and environmental advantages of including DDGS in feed rations for 

growing and finishing swine in Argentina, a mathematical programming model was applied to 

the optimization of feed rations for three growth stages of swine. The findings suggest that 

including DDGS achieved the goals of cost and total phosphorus minimization concurrently. 

The coefficients obtained from the optimal feed rations that included DDGS were used to 

calculate the potential economic and phosphorus savings of the Argentinean swine industry if 

DDGS were fully adopted. It was found that if DDGS were fully adopted in a 20% in the feed 

rations for growing and finishing swine in Argentina, the industry could experience economic 

savings of up to 19.21 million dollars and a five percent reduction in total phosphorus intake.  

The potential impact of DDGS utilization in feed rations on soybean meal and corn usage 

in swine feed rations in Argentina was also estimated. It was found that the use of corn and 

soybean meal would decrease by 147,270 mt and 209,434 mt, respectively, if a full adoption of 

DDGS at a 20% of the feed rations was applied to three growth categories of swine in Argentina.  

Sensitivity analysis was conducted on the impact of DDGS price on its usage in feed 

rations in Argentina. It was found that the consumption of this feedstuff is relatively stable in a 

wide range of prices and that the demand of DDGS for the heaviest category of swine was the 

most inelastic in comparison with the other two growth categories. It was also studied the effect 

of adding an additional constraint to require increasing levels of lysine/energy content to the 

model. It was found that demanding higher levels of lysine/energy content mostly deteriorates 

the cost reduction of feed rations for the third growth category of swine with little effect for the 

first and second growth categories. 
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To sum up, this thesis highlighted the importance of a better understanding of the 

potentials of using DDGS in feed rations and the marketing of DDGS for both agricultural and 

biofuel sectors. Currently, the world supply of DDGS is continuously growing given the mandate 

of producing 15 billion gallons of ethanol per year in the U.S, while Argentina has also issued 

the legislation to increase the production and use of corn-based ethanol. The world demand for 

DDGS is also likely to increase given the growing world consumption of red meat which 

translates into a greater demand for feedstuffs for livestock, hence the use of DDGS. For future 

research, the study of identifying the factors for U.S. DDGS exports could be expanded by 

including the countries with an emerging corn-based ethanol industry since the supply of DDGS 

from these countries may have an important role in the future. Also, future study on the impact 

of DDGS in feed rations can be applied to other livestock in Argentina or other countries 

prompting corn-based biofuels. 
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